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Abstract

We apply the Linear Delta Expansion (LDE) to the Lindstedt–Poincaré (‘‘distorted time’’) method to
find improved approximate solutions to nonlinear problems. We find that our method works very well for a
wide range of parameters in the case of the anharmonic oscillator (Duffing equation), of the non linear
pendulum and of more general anharmonic potentials. The approximate solutions found with this method
converge more rapidly to the exact ones than in the simple Lindstedt–Poincaré method.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The study of nonlinear problems is of crucial importance in all areas of Physics. Some of the
most interesting features of physical systems are hidden in their nonlinear behavior and must be
studied with appropriate methods designed to tackle nonlinear problems. In general, given the
nature of nonlinear phenomena, the approximation methods can only be applied within certain
ranges of the physical parameters and or to certain classes of problems. It is a challenge to devise
nonlinear frameworks that contain both operational ease and flexibility in their application. In
this paper we present a method for the solution of nonlinear problems that attempts to
accomplish these features.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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There are several methods which have been used to find approximate solutions to nonlinear
problems; here, we just review a few. Lindstedt developed a method a long time ago [1] in which
one considers solutions to problems involving conservative oscillatory systems with an unknown
period. The main observation is that by introducing a rescaled time, one can avoid the appearance
of terms indefinitely growing with time (‘‘secular terms’’), that are common in ordinary
perturbation theory. The method is now known as the Lindstedt–Poincaré (LP) method or as the
Distorted Time method.
Another known technique is the perturbative d expansion (see for example Ref. [2]). In this case

the idea is to modify the exponent of the nonlinear term by introducing a parameter d as new
exponent. d interpolates between the linear (d ¼ 0) and the nonlinear (d ¼ 1) problems. If one is
able to solve the linear problem then the original nonlinear problem becomes, after a power
expansion in d; an infinite sequence of linear problems which are (formally) solvable.
Yet another framework is the Multiple-Scale Perturbation Theory (MSPT) [3]. In this case, one

tackles problems in which a dynamical system has physical behaviors at various length or time
scales. This is usually problematic for ordinary perturbation theory due to the appearance (again)
of secular terms. The central idea is to introduce more than one time and to treat them as
independent variables. By performing the usual perturbative expansion, one then imposes
conditions on the solutions (which depend on the different ‘‘times’’) in order to get rid of secular
terms and a linear differential equation is left to solve.
Finally, another method is the Linear Delta Expansion (LDE) [4]. This is a method in which

an arbitrary (or several) parameter l is introduced into the problem and calculations are
carried out with conventional perturbation theory in an expansion parameter d ¼ 1: At each
order in d; the convergence of the approximation can be improved by applying the principal of
minimal sensitivity which consists of a minimization of an observable with respect to the
parameter l:
All of these methods have been applied to a variety of problems. In Ref. [2], Bender et al.

showed how one can obtain approximate solutions using the perturbative d expansion and the
MSPT to the Duffing equation (the classical anharmonic oscillator). Its success then has
motivated their extension of the method into quantum systems [3]. The LDE method has
extensively been applied in many different settings with varying degrees of success. For example,
in Ref. [5] it has been used to analyze disordered systems; in Ref. [6] it has been applied to study
the slow roll potential in inflationary models. Pinto and collaborators have applied it to the
Bose–Einstein condensation problem [7], the OðNÞðf2

Þ
2
3d model [8], to the Walecka model [9] and

to the f4 theory at high temperature [10]. Detailed references can be found in these works.
We can see that it is possible to tackle a large number of nonlinear problems with these well

known techniques. However, there is still room for substantial improvement over them. As
mentioned before, it is desirable to have a method that works over a large range of parameters,
which is not always the case in the aforementioned methods, and we would like the new method to
give a smaller error in the approximations than its competitors. It is also desirable to devise a
framework with operational flexibility and easy to adapt to many different problems.
We show that the method presented in this paper accomplishes these goals in the case of the

Duffing equation, of more general anharmonic potentials and of the nonlinear pendulum. The
method is based on the application of the LDE to the LP method [11]. We find solutions that
converge much faster than in the other methods described.
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In Section 2 a brief review of the LP method is presented followed by a review of the LDE
method in Section 3. We then show the application of both methods to three problems: to the
anharmonic oscillator in Section 4, to more general anharmonic potentials in Section 5 and to the
nonlinear pendulum in Section 6. We present our conclusions and current work in Section 7.
Appendix A contains some of the formulae employed in the computations.
2. The Lindstedt–Poincaré method

In this section we introduce the Lindstedt–Poincaré distorted time (LP) method [1]. We
consider a nonlinear ODE of the form

€xðtÞ þ o2xðtÞ ¼ ef ðxðtÞÞ; (1)

which describes a conservative system, oscillating with an unknown period T. The nonlinear term
ef ðxðtÞÞ is treated as a perturbation. Unfortunately, when the ordinary perturbation is applied to
Eq. (1), by writing the solution as a series in e; the appearance of secular terms spoils the
expansion and any predictive power is lost for sufficiently large time scales.
In order to avoid the appearance of secular terms, we switch to a scaled time t ¼ 2pt=T � Ot;

where T is the (unknown) period of the oscillations. The ODE now reads

O2 d
2x

dt2
ðtÞ þ o2xðtÞ ¼ ef ðxðtÞÞ: (2)

We notice that the dependence upon e in this equation enters both in the solution xðtÞ and in the
frequency O: By assuming e to be a small parameter we write

O2 ¼
X1
n¼0

enan; xðtÞ ¼
X1
n¼0

enxnðtÞ

and expand the r.h.s of Eq. (2) as

f ðxÞ ¼ f
X1
n¼0

enxnðtÞ

 !
� f ðx0Þ þ ex1 f 0

ðx0Þ þ e2 x2 f 0
ðx0Þ þ

x21
2

f 00
ðx0Þ

� �

þ e3 x3 f 0
ðx0Þ þ x2x1 f 00

ðx0Þ þ
x31
6

f 000
ðx0Þ

� �
þ O½e4
:

By using these expansions inside Eq. (2) we obtain a system of linear inhomogeneous
differential equations, each corresponding to a different order in e: Let us consider the first few
terms. To order e0 we obtain the equation

a0
d2x0

dt2
þ o2x0ðtÞ ¼ 0; (3)

describing a harmonic oscillator of frequency O ¼
ffiffiffiffiffi
a0

p
¼ o: To order e we obtain the equation

a0
d2x1

dt2
þ o2x1ðtÞ ¼ s1ðtÞ; (4)
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where the r.h.s. is given by

s1ðtÞ � �a1
d2x0

dt2
þ f ðx0Þ: (5)

We stress the oscillatory behavior of the driving term s1ðtÞ; because of its dependence upon the
order-0 solution, x0ðtÞ: As a result s1ðtÞ will contain the fundamental frequency, corresponding to
a period of 2p in the scaled time, and multiples of this frequency, appearing through the term
f ðx0ðtÞÞ: The presence of a driving term with the fundamental frequency leads to a resonant
behavior of x1ðtÞ and to the unfortunate occurrence of secular terms, which spoils our expansion.
However, we can deal with this problem by fixing the coefficient a1 to cancel the resonant term in
the r.h.s. of Eq. (4). The iteration of this procedure to a given order n allows to determine the
coefficients a0; . . . ; an and therefore the frequency O ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 þ �a1 þ 
 
 
 þ �nan

p
:

3. Linear delta expansion

The linear delta expansion (LDE) is a powerful technique that was originally introduced to deal
with problems of strong coupling Quantum Field Theory, for which the naive perturbative
approach is not useful. Since then this method has been applied to a wide class of problems [5–10].
In its original formulation a Lagrangian density L; which is not exactly solvable, is interpolated
with a solvable Lagrangian L0ðlÞ; depending upon one (or more) parameters l:

Ld ¼ L0ðlÞ þ d L�L0ðlÞð Þ: (6)

For d ¼ 0 one obtains L0ðlÞ; whereas for d ¼ 1 one recovers the full Lagrangian L: The term
dðL�L0Þ is treated as a perturbation and d is used to keep track of the perturbative order. We
stress that d is not a ‘‘natural’’ expansion parameter, as in ordinary perturbation theory, since it is
not present in the original theory. Eventually d is set to be 1.
We notice that the interpolation of the full Lagrangian with the solvable one, L0ðlÞ; brings an

artificial dependence upon the arbitrary parameter l: Such dependence, which would vanish if all
perturbative orders were calculated, can be eliminated to a finite perturbative order, by requiring
some physical observable O to be locally insensitive to l; i.e.

qOðlÞ
ql

¼ 0:

This condition is known as Principle of Minimal Sensitivity (PMS) and is normally seen to
improve the convergence to the exact solution. Rigorous proofs of convergence of the LDE
applied to quantum problems have been obtained in Ref. [12].
4. Anharmonic oscillator

In this section, we apply the LDE to the LP method in order to find approximate solutions to
the Duffing equation, a problem which has already been considered in Ref. [11]; here, we present
the calculation in more detail.
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Consider the equation for the anharmonic oscillator,

d2x

dt2
ðtÞ þ o2xðtÞ ¼ �mx3ðtÞ: (7)

This equation describes a conservative system, where the total energy is given by

E ¼
_x2

2
þ

o2x2

2
þ m

x4

4

� �
: (8)

The period of the oscillation can be calculated in terms of an elliptic integral,

T exact ¼ 2

Z A

�A

dx
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðE � VðxÞÞ
p ; (9)

where A is the amplitude of the oscillations.
Following the procedure explained in the Sections 2 and 3, we write Eq. (7) as

O2 d
2x

dt2
ðtÞ þ ðo2 þ l2ÞxðtÞ ¼ d½�mx3ðtÞ þ l2xðtÞ
; (10)

where an arbitrary parameter l with dimension of frequency has been introduced. Clearly for
d ¼ 1; Eq. (10) reduces to Eq. (7). We repeat the procedures previously explained and find a
hierarchy of linear inhomogeneous differential equations toto be solved sequentially.

4.1. Zeroth order

To zeroth order we obtain the equation

a0
d2x0

dt2
þ ðo2 þ l2Þx0ðtÞ ¼ 0; (11)

with solution

x0ðtÞ ¼ A cos t: (12)

The zeroth-order frequency is then given by

a0 ¼ o2 þ l2: (13)

4.2. First order

To first order we find the equation

a0
d2x1

dt2
þ ðo2 þ l2Þx1ðtÞ ¼ S1ðtÞ; (14)

where

S1ðtÞ ¼ A cos t a1 þ l2 �
3A2m
4

� �
�

A3m
4

cos 3t: (15)
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Now a1 is fixed by eliminating the term proportional to cos t:

a1 ¼
3A2m
4

� l2: (16)

We obtain the solution

x1ðtÞ ¼ �
A3m

32ðo2 þ l2Þ
cos tþ

A3m

32ðo2 þ l2Þ
cos 3t;

and the frequency

O2 ¼ a0 þ a1 ¼ o2 þ
3A2m
4

; (17)

which is observed to be independent of l:
4.3. Second order

The second-order equation is given by

a0
d2x2

dt2
þ ðo2 þ l2Þx2ðtÞ ¼ S2ðtÞ; (18)

where now

S2ðtÞ ¼
Að3A4m2 þ 128a2ðo2 þ l2ÞÞ

128ðo2 þ l2Þ
cos tþ

A3mð3A2m� 4l2Þ

16ðo2 þ l2Þ
cos 3t�

3A5m2

128ðo2 þ l2Þ
cos 5t: (19)

As before a2 is fixed by eliminating the term proportional to cos t:

a2 ¼ �
3A4m2

128ðo2 þ l2Þ
: (20)

We obtain the solution

x2ðtÞ ¼
A3mð23A2m� 32l2Þ

1024ðo2 þ l2Þ2
cos tþ

A3mð�3A2mþ 4l2Þ

128ðo2 þ l2Þ2
cos 3tþ

A5m2

1024ðo2 þ l2Þ2
cos 5t (21)

and the frequency

O2 ¼ a0 þ a1 þ a2 ¼ o2 þ
3A2m
4

�
3A4m2

128ðo2 þ l2Þ
: (22)

Note that at this order the frequency now depends on the arbitrary parameter l: However, due
to the explicit dependence, by applying the PMS, we would obtain the same solution as in
the simple LP method (l ¼ 0). In order to get a different solution, we must go to the next order in
the expansion.
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4.4. Third order

Following the same procedure, we obtain the following expression for the third order:

a0
d2x3

dt2
þ ðo2 þ l2Þx3ðtÞ ¼ S3ðtÞ; (23)

where

s3ðtÞ ¼ Aa3 �
3A5m2ð3A2m� 4l2Þ

512ðo2 þ l2Þ2

� �
cos t�

ðA3mð297A4m2 � 768A2ml2 þ 512l4ÞÞ

2048ðo2 þ l2Þ2
cos 3t

þ
3A5m2ð3A2m� 4l2Þ

256ðl2 þ o2Þ
2

cos 5t�
3A7m3

2048ðl2 þ o2Þ
2
cos 7t: ð24Þ

By eliminating the term proportional to cos t we determine a3 to be

a3 ¼
3A4m2ð3A2m� 4l2Þ

512ðl2 þ o2Þ
2

; (25)

and the solution

x3ðtÞ ¼ �
A3m
32768

547A4m2 � 1472A2ml2 þ 1024l4

ðl2 þ o2Þ
3

cos t

þ
A3m
16384

297A4m2 � 768A2ml2 þ 512l4

ðl2 þ o2Þ
3

cos 3t

þ
A5m2

2048

ð�3A2mþ 4l2Þ

ðl2 þ o2Þ
3

cos 5tþ
A7m3

32768

1

ðl2 þ o2Þ
3
cos 7t:

The frequency to order d3 is now obtained to be

O2 ¼ a0 þ a1 þ a2 þ a3 ¼ o2 þ
3A2m
4

�
3A4m2

128ðo2 þ l2Þ
þ
3A4m2ð3A2m� 4l2Þ

512ðl2 þ o2Þ
2

: (26)

This time, the frequency depends upon the arbitrary parameter l in a nontrivial way and we can
apply the PMS in order to fix the value of l:We do this by imposing that dO2=dl ¼ 0; which leads
to the following result:

l2 ¼
3A2m
4

: (27)

Notice that since l depends linearly upon A the formula for O2 obtained in this case does not
simply correspond to an expansion in A. As a matter of fact we find that the frequency
corresponding to this value of l is

O2 ¼
69A4m2 þ 192A2mo2 þ 128o4

96A2mþ 128o2
: (28)
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Fig. 1. Squared frequency of the anharmonic oscillator as a function of the amplitude (arbitrary units). We assume

o ¼ m ¼ 1: The solid curve is the exact result, the dotted curve is the Lindstedt–Poincaré result and the dash-cross curve
is the result of our method.

0 0.2 0.4 0.6 0.8 1
A

0

0.2

0.4

0.6

0.8

1

Ω
2

Fig. 2. Squared frequency of the anharmonic oscillator as a function of the amplitude (arbitrary units). We assume

o ¼ 1 and m ¼ �1: The solid curve is the exact result, the dotted curve is the Lindstedt–Poincaré result and the dash-
cross curve is the result of our method.
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Note that the Duffing equation (7) is left invariant under the simultaneous rescaling of the
anharmonic coupling m and of the amplitude, i.e. m ! m0 and A ! A0 ¼ A

ffiffiffiffiffiffiffiffiffi
m=m0

p
: This invariance

is manifest in Eq. (28), which is function of A2m; which is invariant under this rescaling.
In Fig. 1 we compare the exact frequency, calculated with Eq. (9) with the frequency

obtained with our method (LPLDE), Eq. (28), and with the LP method, Eq. (26), taking
l ¼ 0; both to third order in perturbation theory. We take o ¼ m ¼ 1 (see the left plot of
Fig. 3) and vary the amplitude of the oscillations. We observe that our method yields an
excellent approximation to the exact result even for large amplitudes, where the simple LP
approximation fails.
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Fig. 4. Period of the anharmonic oscillator. We assume o ¼ 1: The solid curve is the exact result; the dashed and dotted
curve refer to the formulas of Ref. [2] calculated to first- and second-order respectively; the dot-dashed curve is the

Lindstedt–Poincaré result; the bold dashed curve is the result of our method.
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Fig. 3. Anharmonic potential corresponding to (a) o ¼ m ¼ 1 and (b) o ¼ 1 and m ¼ �1:
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In Fig. 2 we consider the case studied in Fig. 1, but choosing o ¼ 1 and m ¼ �1 (see the right
plot of Fig. 3). In this case the potential has a local minimum in the origin and two maxima,
located at x ¼ �1: Periodic solutions are supported only for amplitudes Ao1; A ¼ 1 being a point
of (unstable) equilibrium, where the period diverges. Also in this case, the LPLDE method offers
an excellent approximation to the exact result for a large range of amplitudes; as expected, the
approximation is poorer in the region A � 1; where the point of equilibrium is approached.
In Fig. 4 we compare the period obtained with our method to the exact period of Eq. (9) and to

the one obtained with the formulae of [2], which are obtained by applying the nonlinear delta
expansion. Our method provides an excellent approximation to the exact period over a wide range
of the parameter m; which controls the nonlinearity. The plots are obtained assuming o ¼ 1 and
the initial conditions xð0Þ ¼ 1 and _xð0Þ ¼ 0: The formulae of Ref. [2] behave badly in the region
mo0; which corresponds to a potential well of finite depth centered around x ¼ 0; and yield a
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precision comparable to the one achieved with our method for m40: Corresponding to the value
m ¼ 0 the oscillator is in a position of (unstable) equilibrium and the exact period diverges. Notice
that for large values of m all the methods seem to give a good approximation to the exact solution,
including the LP method (to first order), which (to third order) was behaving poorly in the case
previously studied. Unfortunately the equations of Ref. [2] are not suitable to be analyzed as in
Fig. 1, and thus we cannot fully test the efficiency of this method.
In Fig. 5, we plot the relative error over the squared frequency corresponding to the different

approximations for m40 (the error is given by D ¼ ðO2
approx � O2

exactÞ=O
2
exact � 100). Our method to

third order in perturbation theory yields an error typically smaller than the errors of the other
methods and with a magnitude of about 0:1%:
5. More general anharmonic potentials

In a more general case than the one discussed in Section 4, we consider a unit mass under the
action of a force f ðxÞ: The motion is described by Newton’s equation

d2x

dt2
¼ f ðxÞ; (29)

where f ðxÞ can be a nonlinear function of the position. In the proximity of a stable equilibrium
point it will be possible to approximate f ðxÞ with the first few terms in the Taylor expansion. To
make things easier we limit ourselves to the case in which f ðxÞ is an odd function of x and write
the equation

d2x

dt2
þ o2x ¼ �a3x

3 � a5x
5 � a7x

7 � 
 
 
 ; (30)

where ai are constants.
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The application of our method to this equation where the coefficients ai are assumed to vanish
for i47 is straightforward and follows closely the procedure illustrated in the previous section.
In particular, to third order we obtain

O2 ¼ ½l2 þ o2
 þ d
3a3A

2

4
þ
5a5A

4

8
þ
35a7A

6

64
� l2

� �
þ d2

A4

196608ðo2 þ l2Þ
�4608a23 � 12288a3a5A

2
	

�32ð260a25 þ 423a3a7ÞA
4 � 18528a5a7A

6 � 10395a27A


þ d3

1

301989888ðl2 þ o2Þ
2

� 5308416a33A
6 þ 18948096a23a5A

8 þ 22364160a3a
2
5A

10 þ 20155392a23a7A
10

	
þ 8642560a35A

12 þ 47609856a3a5a7A
12 þ 27479040a25a7A

14 þ 25418880a3a
2
7A

14

þ 29136600a5a
2
7A

16 þ 10286325a37A
18 � 7077888a23A

4l2 � 18874368a3a5A
6l2

�12779520a25A
8l2 � 20791296a3a7A

8l2 � 28459008a5a7A
10l2 � 15966720a27A

12l2


: ð31Þ

The application of the PMS, after setting d ¼ 1; in this case yields

lPMS ¼

ffiffiffiffiffiffi
N

D

r
; (32)

where

N ¼ 6ð5308416a33A
2 þ 18948096a23a5A

4 þ 3072a3ð7280a25 þ 6561a3a7ÞA
6

þ 2048a5ð4220a25 þ 23247a3a7ÞA
8 þ 1920a7ð14312a25 þ 13239a3a7ÞA

10

þ 29136600a5a
2
7A

12 þ 10286325a37A
14Þ; ð33Þ

D ¼ 9216ð4608a23 þ 12288a3a5A
2 þ 32ð260a25 þ 423a3a7ÞA

4 þ 18528a5a7A
6 þ 10395a27A

8Þ: (34)

Notice that Eqs. (31) and (32) reduce to Eqs. (26) and (27) for a5 ¼ a7 ¼ 0 and a3 ¼ m:
0 10 20 30 40 50 60 70 80 90 100
Energy

0

1

2

3

Pe
ri

od

Fig. 6. Period of the solution of Eq. (30) as a function of the energy by assuming o ¼ a3 ¼ a5 ¼ a7 ¼ 1: The solid line is
the period obtained with our method, the dotted line is the exact result and the dashed line is the Lindstedt–Poincaré

result.



ARTICLE IN PRESS

P. Amore, A. Aranda / Journal of Sound and Vibration 283 (2005) 1115–11361126
In Fig. 6 we have applied the formulas given above, by choosing o ¼ a3 ¼ a5 ¼ a7 ¼ 1 and
plotting the period as a function of the energy. It can be appreciated that our method (solid line)
provides an excellent approximation to the exact solution (dotted line) even for oscillations of
large amplitude, whereas the LP expansion (dashed line) only works for very small oscillations.
6. The nonlinear pendulum

We now apply the improved method to the nonlinear pendulum. The steps are exactly the same
as before and we proceed to outline them. First, consider the equation for the nonlinear pendulum,

d2y
dt2

þ o2 sin y ¼ 0; (35)

where o2 ¼ g=l is the natural frequency of the small oscillations of the pendulum. Following the
Lindstedt–Poincaré method, we introduce a scaled time t ¼ Ot and write the equation as

O2 d
2y
dt2

þ o2 sin y ¼ 0; (36)

where O ¼ 2p=T is the (unknown) frequency and T is the period of the oscillations. As discussed in
the case of the anharmonic oscillator, we can apply the Linear Delta Expansion to the problem by
modifying the above equation and writing it as

O2 d
2y
dt2

þ l2y ¼ d½�o2 sin yþ l2y
 � df ðyÞ; (37)

where l is an arbitrary parameter, with the dimension of frequency. In what follows we use the
same procedure previously outlined for the anharmonic oscillator, with a few technical differences
due to the more difficult nature of the present problem.
We will expand the angle and the frequency as

yðtÞ ¼
X1
n¼0

dnynðtÞ; O2 ¼
X1
n¼0

dnan:

We will solve Eq. (37) subject to the boundary condition yð0Þ ¼ A and _yð0Þ ¼ 0; i.e.

y0ð0Þ ¼ A; yj40ð0Þ ¼ 0; _yj ¼ 0: (38)

6.1. Zeroth order

To zeroth order the equation for the pendulum reads

a0
d2y0
dt2

þ l2y0 ¼ 0; (39)

and we obtain the solution

y0ðtÞ ¼ A cos t; (40)
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describing a simple oscillatory motion with (scaled) period 2p: The zeroth-order frequency is
therefore given by

a0 ¼ l2: (41)

6.2. First order

To first order we obtain the differential equation

a0
d2y1
dt2

þ l2y1 ¼ S1ðtÞ; (42)

where we have defined the source term:

S1ðtÞ � �a1
d2y0
dt2

þ f ðy0Þ ¼ Aa1 cos tþ ½�o2 sinðA cos tÞ þ l2A cos t
: (43)

As before, in order to avoid the occurrence of secular terms, we need to eliminate contributions
proportional to cos t from the source term S1ðtÞ (recall that such a term would yield a resonant
behavior of the solution y1ðtÞÞ: We enforce this condition by requiring that

1

p

Z 2p

0

dtS1ðtÞeit ¼ 0: (44)

As a result of this operation, we are able to fix the coefficient a1:

a1 ¼
1

A
�l2A þ

o2

p

Z 2p

0

dt sinðA cos tÞeit
� �

¼
1

A
½�l2A þ o2c1
; (45)

where we have used the following expansion of sinðA cos tÞ:

sinðA cos tÞ ¼
X1
j¼0

c2jþ1 cos½ð2j þ 1Þt
; (46)

and

c2jþ1 ¼
1

p

Z 2p

0

dteið2jþ1Þt sinðA cos tÞ ¼ 2ð�1Þ jJ2jþ1ðAÞ: (47)

Eq. (42) now reads

a0
d2y1
dt2

þ l2y1 ¼ S1ðtÞ ¼ �o2
X1
j¼1

c2jþ1 cos ð2j þ 1Þt½ 
; (48)

where the sum starts from j ¼ 1 because of the vanishing of the term proportional to cos t:
We write the solution y1ðtÞ as

y1ðtÞ ¼
X1
j¼0

d
ð1Þ
2jþ1 cos½ð2j þ 1Þt
; (49)
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where the coefficients are (for j41)

d
ð1Þ
2jþ1 ¼

o2c2jþ1

4l2jð j þ 1Þ
�

d
ð1Þ

2jþ1

l2
: (50)

In the last equation we have introduced the scale coefficients d
ð1Þ

2jþ1; which do not depend upon l:
We notice that Eq. (48) cannot be used to determine the coefficient corresponding to j ¼ 0; in fact,
this coefficient is fixed by the boundary condition

y1ð0Þ ¼
X1
j¼0

d
ð1Þ
2jþ1 ¼ 0; (51)

which entails

d
ð1Þ
1 ¼ �

X1
j¼1

d
ð1Þ
2jþ1 ¼ �

X1
j¼1

o2c2jþ1

4l2jð j þ 1Þ
�

d
ð1Þ

1

l2
: (52)

6.3. Second order

To second order we obtain the equation

a0
d2y2
dt2

þ l2y2 ¼ S2ðtÞ; (53)

where we have introduced the source term

S2ðtÞ � � a1
d2y1
dt2

� a2
d2y0
dt2

þ y1ðtÞ f 0
ðy0Þ

¼ � a1
d2y1
dt2

� a2
d2y0
dt2

þ y1ðtÞ½�o2 cos y0ðtÞ þ l2
: ð54Þ

We can expand the source term in a series as

S2ðtÞ ¼
X1
n¼1

s
ð2Þ
2nþ1 cosð2n þ 1Þt; (55)

where the coefficients of the expansion are given by

s
ð2Þ
2nþ1 ¼

1

p

Z 2p

0

dteið2nþ1ÞtS2ðtÞ �
s
ð2aÞ
2nþ1

l2
þ s

ð2bÞ
2nþ1: (56)

We have introduced the scaled coefficients s
ð2aÞ
2nþ1 and s

ð2bÞ
2nþ1; which are independent of l and read

s
ð2aÞ
2nþ1 ¼

o2c1

A
ð2n þ 1Þ2d

ð1Þ

2nþ1

�
o2

2

X1
j¼n

d
ð1Þ

2jþ1 ~c2ð j�nÞ þ
X1

l¼nþ1

d
ð1Þ

2ðl�n�1Þþ1 ~c2l þ
Xn

j¼0

d
ð1Þ

2jþ1 ~c2ðn�jÞ

( )
;

s
ð2bÞ
2nþ1 ¼ �4nðn þ 1Þd

ð1Þ

2nþ1:
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The coefficients ~c2j follow from the expansion of cos ½A cos t
:

cos ½A cos t
 ¼
X1
j¼0

~c2j cos ½2jt
; (57)

and read, for j40;

~c2j �
1

p

Z 2p

0

dt cos½A cos t
ei2jt

¼ 2
X1
n¼j

ð�1Þn
A

2

� �2n
1

ðn � jÞ!ðn þ jÞ!
¼ 2ð�1Þ jJ2jðAÞ ð58Þ

and, for j ¼ 0;

~c0 ¼ cosA �
X1
j¼1

~c2j: (59)

As before we need to eliminate the coefficient s
ð2Þ
1 :

s
ð2Þ
1 ¼ a1d

ð1Þ
1 þ a2A þ l2d ð1Þ

1 �
o2

2

X1
j¼0

d
ð1Þ
2jþ1ð~c2j þ ~c2jþ2Þ �

o2

2
d
ð1Þ
1 ~c0 (60)

and obtain the coefficient a2:

a2 ¼
1

A
�

o2c1

A
�

o2 ~c0
2

� �
d
ð1Þ

1

l2
þ

o2

2l2
X1
j¼0

d
ð1Þ

2jþ1ð~c2j þ ~c2jþ2Þ

( )
�

a2
l2

; (61)

where a2 ¼ l2a2 is a scaled coefficient, independent of l:
We are therefore able to find the solution of Eq. (53),

y2ðtÞ ¼
X1
j¼0

d
ð2Þ
2jþ1 cos ½ð2j þ 1Þt
; (62)

with the coefficients, for ja1;

d
ð2Þ
2jþ1 �

d
ð2aÞ

2jþ1

l4
þ

d
ð2bÞ

2jþ1

l2
; (63)

expressed in terms of the l-independent terms

d
ð2aÞ

2jþ1 ¼ �
s
ð2aÞ
2jþ1

4jð j þ 1Þ
; d

ð2bÞ

2jþ1 ¼ �
s
ð2bÞ
2jþ1

4jð j þ 1Þ
¼ d

ð1Þ

2jþ1:
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As before the j ¼ 0 coefficient is not fixed by the equation and needs to be determined by
enforcing the boundary condition y2ð0Þ ¼ 0: We obtain

d
ð2Þ
1 ¼ �

X1
j¼1

d
ð2Þ
2jþ1 ¼

X1
j¼1

s
ð2Þ
2jþ1

4l2jð j þ 1Þ
: (64)

6.4. Third order

To third order we obtain the equation

a0
d2y3
dt2

þ l2y3 ¼ S3ðtÞ; (65)

where the source term S3ðtÞ is

S3ðtÞ � �a1
d2y2
dt2

� a2
d2y1
dt2

� a3
d2y0
dt2

þ y2ðtÞ f 0
ðy0Þ þ

y21ðtÞ
2

f 00
ðy0Þ

� �
: (66)

Once again it is useful to expand the source term in a series as

S3ðtÞ ¼
X1
n¼0

s
ð3Þ
2nþ1 cosð2n þ 1Þt; (67)

where the coefficients of the expansion are given by

s
ð3Þ
2nþ1 ¼

1

p

Z 2p

0

dteið2nþ1ÞtS3ðtÞ ¼
s
ð3aÞ
2nþ1

l4
þ

s
ð3bÞ
2nþ1

l2
þ s

ð3cÞ
2nþ1 (68)

and sð3a;b;cÞ are independent of l: A lengthy calculation allows to find the expressions for these
coefficients, which can be found in Appendix A. Here we only write the coefficient of the term
cos t; corresponding to n ¼ 0:

s
ð3Þ
1 ¼ a1d

ð2Þ
1 þ a2d

ð1Þ
1 þ a3A �

o2

2

X1
j¼0

~c2jd
ð2Þ
2jþ1 �

o2

2

X1
l¼1

~c2ld
ð2Þ
2l�1 �

o2

2
~c0d

ð2Þ
1 þ l2d ð2Þ

1

þ
o2

8

X1
m¼0

X1
j¼mþ1

c2ð j�m�1Þþ1d
ð1Þ
2mþ1d

ð1Þ
2jþ1 þ

o2

8

X1
j¼0

Xj

m¼0

c2ð�mþjÞþ1d
ð1Þ
2mþ1d

ð1Þ
2jþ1

þ
o2

8

X1
m¼jþ1

X1
j¼0

c2ðm�j�1Þþ1d
ð1Þ
2jþ1d

ð1Þ
2mþ1 þ

o2

8

X1
m¼0

Xm

j¼0

c2ðm�jÞþ1d
ð1Þ
2jþ1d

ð1Þ
2mþ1

þ
o2

8

X1
m¼0

X1
j¼0

c2ðmþjÞþ1d
ð1Þ
2jþ1d

ð1Þ
2mþ1 þ

o2

8

X1
m¼0

X1
j¼0

c2ðmþjþ1Þþ1d
ð1Þ
2jþ1d

ð1Þ
2mþ1: ð69Þ

The coefficient a3 is fixed by requiring that s
ð3Þ
1 vanish:

a3 ¼
a3a

l4
þ
a3b

l2
; (70)



ARTICLE IN PRESS

P. Amore, A. Aranda / Journal of Sound and Vibration 283 (2005) 1115–1136 1131
where

a3a ¼ �
o2

A

c1

A
�

~c0
2

� �
d
ð2aÞ

1 þ a2d
ð1Þ

1 �
1

2

X1
j¼0

~c2j þ ~c2jþ2

� �
d
ð2aÞ

2jþ1

(

þ
1

8

X1
m¼0

X1
j¼mþ1

2c2ð j�m�1Þþ1 þ c2ðmþjÞþ1 þ c2ðmþjÞþ3

� �
d
ð1Þ

2jþ1d
ð1Þ

2mþ1

"

þ
Xm

j¼0

ð2c2ðm�jÞþ1 þ c2ðmþjÞþ1 þ c2ðmþjÞþ3Þd
ð1Þ

2jþ1d
ð1Þ

2mþ1

#)
;

a3b ¼ �
o2

A

c1

A
�

~c0
2

� �
d
ð2bÞ

1 �
1

2

X1
j¼0

~c2j þ ~c2jþ2

� �
d
ð2bÞ

2jþ1

( )
¼ a2: ð71Þ

To this order the squared frequency reads

O2 ¼ a1a þ 2
a2
l2

þ
a3a

l4
:

The ‘‘principle of minimal sensitivity’’ yields the solution

l2 ¼ �
a3a

a2
(72)

and a corresponding value of O2:

O2 ¼ a1a �
a22
a3a

: (73)

In Fig. 7 we plot the period of the nonlinear pendulum as a function of the amplitude, as
obtained in the LPLDE and LP approximations, and compare the results with the exact period.
-3 -2 -1 0 1 2 3
A

5

10

15

20

T

Fig. 7. Period of the nonlinear pendulum as a function of the amplitude. We assume o ¼
ffiffiffiffiffiffiffi
g=l

p
¼ 1: The solid line is

the exact result, the dashed line is the result obtained with our method and the dotted line is the Lindstedt–Poincaré

result.
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We assume o ¼ 1 and use the formulae given above truncating the infinite series to a maximum
value jmax ¼ 5: As it can be seen from the figure, the LPLDE approximation is in excellent
agreement with the exact result, up to very large amplitudes. A ¼ �p corresponds to an unstable
point of equilibrium, for which the exact period diverges.
7. Conclusions

We have presented a method for the solution of nonlinear problems which are conservative and
periodic. It is based on the application of the Linear Delta Expansion to the Lindstedt–Poincaré
method. We applied it to three problems: the Duffing Equation, more general anharmonic
potentials and the nonlinear pendulum. In the case of the Duffing equation we find that the new
method converges faster and with greater accuracy than the simple LP method. Also, by
comparing it with methods based on the perturbative d expansion, we show that our solution not
only converges faster and more accurately, but it also works for a much wider range of
parameters, including the case in which the nonlinear coupling m is negative. In a similar fashion,
we show that the method works remarkably well also for the nonlinear pendulum, for which the
method is implemented without performing any Taylor expansion of the potential. Recently we
have also obtained an extension of the present method to quantum systems, which is based on the
ideas of multiple scale analysis [13].
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Appendix A. Coefficients

In this appendix we present the computation of the coefficients of s
ð3Þ
2nþ1 in Eq. (68). Let us

rewrite Eq. (68) in the following form:

s
ð3Þ
2nþ1 � I

ðAÞ

2nþ1 þ I
ðBÞ
2nþ1 þ I

ðCÞ

2nþ1 þ I
ðDÞ

2nþ1: (A.1)

We now proceed to compute each of these terms:
�
 I
ðAÞ

2nþ1:

I
ðAÞ

2nþ1 ¼
o2c1

A
� l2

� �
ð2n þ 1Þ2

d
ð2aÞ

2nþ1

l4
þ

d
ð2bÞ

2nþ1

l2

" #
þ

a2
l2

ð2n þ 1Þ2
d
ð1Þ

2nþ1

l2
þ a3Adn0 ðA:2Þ

�
ið1Þa

l4
þ

ið2Þa

l2
þ ið3Þa : ðA:3Þ
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�
 I
ðBÞ
2nþ1:

I
ðBÞ
2nþ1 ¼ �

o2

2

X1
l¼0

X1
j¼0

~c2ld
ð2Þ
2jþ1 dnþl�j;0 þ dnþ1�lþj;0 þ dlþj�n;0 þ dnþlþjþ1;0

	 


�
i
ð1Þ
b

l4
þ

i
ð2Þ
b

l2
: ðA:4Þ

The four different integrals become:
(a)

I
ðB1Þ
2nþ1 ¼ �

o2

2

X1
j¼n

~c2ð j�nÞd
ð2Þ
2jþ1; (A.5)
(b)

I
ðB2Þ
2nþ1 ¼ �

o2

2

X1
l¼nþ1

~c2ld
ð2Þ
2ðl�n�1Þþ1; (A.6)
(c)

I
ðB3Þ
2nþ1 ¼ �

o2

2

Xn

l¼0

~c2ld
ð2Þ
2ðn�lÞþ1; (A.7)
(d)

I
ðB4Þ
2nþ1 ¼ 0: (A.8)
Therefore, we finally have that

I
ðBÞ
2nþ1 ¼ �

o2

2

X1
j¼n

~c2ð j�nÞd
ð2Þ
2jþ1 þ

X1
l¼nþ1

~c2ld
ð2Þ
2ðl�n�1Þþ1 þ

Xn

l¼0

~c2ld
ð2Þ
2ðn�lÞþ1

" #
; (A.9)
�
 I
ðCÞ

2nþ1:

I
ðCÞ

2nþ1 ¼
1

p

Z 2p

0

dteið2nþ1Þtl2
X1
j¼0

d
ð2Þ
2jþ1 cosð2j þ 1Þt

 !
¼ l2d ð2Þ

2nþ1

�
ið1Þc

l2
þ ið2Þc ; ðA:10Þ
�
 I
ðDÞ

2nþ1:

I
ðDÞ

2nþ1 ¼
1

p

Z 2p

0

dteið2nþ1Þt o
2

2
sinA cos t

X1
j¼0

d
ð1Þ
2jþ1 cosð2j þ 1Þt

 !2
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¼
1

p

Z 2p

0

dteið2nþ1Þt o
2

2

X1
l¼0

c2lþ1 cosð2l þ 1Þt

�
X1
m¼0

d
ð1Þ
2mþ1 cosð2m þ 1Þt

X1
j¼0

d
ð1Þ
2jþ1 cosð2j þ 1Þt:

We need to calculate the following integral:

I ¼
1

p

Z 2p

0

dteið2nþ1Þt cos½ð2j þ 1Þt
 cos½ð2l þ 1Þt
 cos½ð2m þ 1Þt
: (A.12)

Using the relation

C ¼ cos½ð2j þ 1Þt
 cos½ð2l þ 1Þt
 cos½ð2m þ 1Þt


¼ 1
4
½cosð2ðl þ m þ jÞ þ 3Þtþ cosð2ðl þ m � jÞ þ 1Þt

þ cosð2ðl � m þ jÞ þ 1Þtþ cosð2ðl � m � jÞ � 1Þt
; ðA:13Þ

one obtains

I ¼
1

p

Z 2p

0

dteið2nþ1ÞtC

¼ 1
4
fd2ðnþlþmþjÞþ4;0 þ d2ðn�l�m�jÞ�2;0 þ d2ðnþlþm�jÞþ2;0 þ d2ðn�l�mþjÞ;0

þ d2ðnþl�mþjÞþ2;0 þ d2ðn�lþm�jÞ;0 þ d2ðnþl�m�jÞ;0 þ d2ðn�lþmþjÞþ2;0g; ðA:14Þ

and finally

I
ðDÞ

2nþ1 ¼
o2

8

X1
l¼0

X1
m¼0

X1
j¼0

c2lþ1d
ð1Þ
2mþ1d

ð1Þ
2jþ1 d2ðnþlþmþjÞþ4;0 þ d2ðn�l�m�jÞ�2;0 þ d2ðnþlþm�jÞþ2;0

�
þd2ðn�l�mþjÞ;0 þ d2ðnþl�mþjÞþ2;0 þ d2ðn�lþm�jÞ;0 þ d2ðnþl�m�jÞ;0 þ d2ðn�lþmþjÞþ2;0

�
¼

id

l4
: ðA:15Þ

We are then left with 8 integrals that can be evaluated in the following way (we call them I
ðiÞ
D ):
(i)

I
ð1Þ
D ¼

o2

8

X1
l¼0

X1
m¼0

X1
j¼0

c2lþ1d
ð1Þ
2mþ1d

ð1Þ
2jþ1d2ðnþlþmþjÞþ4;0 ¼ 0; (A.16)
(ii)

I
ð2Þ
D ¼

o2

8

X1
l¼0

X1
m¼0

X1
j¼0

c2lþ1d
ð1Þ
2mþ1d

ð1Þ
2jþ1d2ðn�l�m�jÞ�2;0

¼
o2

8

Xn�j�1

m¼0

Xn�1
j¼0

c2ðn�m�j�1Þþ1d
ð1Þ
2mþ1d

ð1Þ
2jþ1; ðA:17Þ
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(iii)

I
ð3Þ
D ¼

o2

8

X1
l¼0

X1
m¼0

X1
j¼0

c2lþ1d
ð1Þ
2mþ1d

ð1Þ
2jþ1d2ðnþlþm�jÞþ2;0

¼
o2

8

X1
m¼0

X1
j¼nþmþ1

c2ð j�n�m�1Þþ1d
ð1Þ
2mþ1d

ð1Þ
2jþ1; ðA:18Þ
(iv)

I
ð4Þ
D ¼

o2

8

X1
l¼0

X1
m¼0

X1
j¼0

c2lþ1d
ð1Þ
2mþ1d

ð1Þ
2jþ1d2ðn�l�mþjÞ;0

¼
o2

8

X1
j¼0

Xnþj

m¼0

c2ðn�mþjÞþ1d
ð1Þ
2mþ1d

ð1Þ
2jþ1; ðA:19Þ
(v)

I
ð5Þ
D ¼

o2

8

X1
l¼0

X1
m¼0

X1
j¼0

c2lþ1d
ð1Þ
2mþ1d

ð1Þ
2jþ1d2ðnþl�mþjÞþ2;0

¼
o2

8

X1
m¼nþjþ1

X1
j¼0

c2ðm�n�j�1Þþ1d
ð1Þ
2jþ1D

ð1Þ
2cmþ1; ðA:20Þ
(vi)

I
ð6Þ
D ¼

o2

8

X1
l¼0

X1
m¼0

X1
j¼0

c2lþ1d
ð1Þ
2mþ1d

ð1Þ
2jþ1d2ðn�lþm�jÞ;0

¼
o2

8

X1
m¼0

Xmþn

j¼0

c2ðmþn�jÞþ1d
ð1Þ
2jþ1d

ð1Þ
2mþ1; ðA:21Þ
(vii)

I
ð7Þ
D ¼

o2

8

X1
l¼0

X1
m¼0

X1
j¼0

c2lþ1d
ð1Þ
2mþ1d

ð1Þ
2jþ1d2ðnþl�m�jÞ;0

¼
o2

8

X1
m¼maxð0;n�jÞ

X1
j¼0

c2ðmþj�nÞþ1d
ð1Þ
2jþ1d

ð1Þ
2mþ1; ðA:22Þ
(viii)
I
ð8Þ
D ¼

o2

8

X1
l¼0

X1
m¼0

X1
j¼0

c2lþ1d
ð1Þ
2mþ1d

ð1Þ
2jþ1d2ðn�lþmþjÞþ2;0

¼
o2

8

X1 X1
c2ðnþmþjþ1Þþ1d

ð1Þ
2jþ1d

ð1Þ
2mþ1: ðA:23Þ
m¼0 j¼0
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The final expression is

I
ðDÞ

2nþ1 ¼
o2

8

Xn�j�1

m¼0

Xn�1
j¼0

c2ðn�m�j�1Þþ1d
ð1Þ
2mþ1d

ð1Þ
2jþ1 þ

X1
m¼0

X1
j¼nþmþ1

c2ð j�n�m�1Þþ1d
ð1Þ
2mþ1d

ð1Þ
2jþ1

(

þ
X1
j¼0

Xnþj

m¼0

c2ðn�mþjÞþ1d
ð1Þ
2mþ1d

ð1Þ
2jþ1 þ

X1
m¼nþjþ1

X1
j¼0

c2ðm�n�j�1Þþ1d
ð1Þ
2jþ1d

ð1Þ
2mþ1

þ
X1
m¼0

Xmþn

j¼0

c2ðmþn�jÞþ1d
ð1Þ
2jþ1d

ð1Þ
2mþ1 þ

X1
m¼maxð0;n�jÞ

X1
j¼0

c2ðmþj�nÞþ1d
ð1Þ
2jþ1d

ð1Þ
2mþ1

þ
X1
m¼0

X1
j¼0

c2ðnþmþjþ1Þþ1d
ð1Þ
2jþ1d

ð1Þ
2mþ1

)
: ðA:24Þ
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